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Fracture and Failure at and Near Interfaces Under Pressure 

Abstract 

A research study is summarized that addressed the failure behavior of solid propellant 
rocket fuels through crack propagation. The objective of the study was to 

1) develop the means for measuring large deformation fields around the tips of 
stationary or slowly moving cracks, in order to develop realistic data against 
which improved analytical results can be compared, and to 

2) initiate a new computational approach for stress analysis of cracks in solid 
propellants at and near interfaces, which analysis can draw on the ever 
expanding capabilities of computationally parallel processing. 

Correspondingly, both experimental and analytical/numerical work was carried out: 

(A) Experimental work: 

(1) A full field method for visualizing and measuring deformation around the crack 
tip in a fracture process with large strains has been developed; 

(2) The method was applied to the fracture in a solid propellant (growth of a crack). 
It was found that large variations of strain occur in nominally "homogeneous" 
deformation fields, with strain variations by as much as factors of three. 

(B) Computational/Analytical work: 

(1) Proposed and implemented a discrete-continuum approach to analyze damage 
evolution in solid propellant (particle-filled elastomers in general). 

(2) Established analytical stability conditions for interfacial dewetting at planar, 
cylindrical and spherical interfaces for uniform decohesion. 

(3) Applied the method to investigate the effect of particle interaction on the damage 
evolution in solid propellant: Small changes in particle geometry and spacing 
have large effects on particle debonding. Reattachments observed as part of the 
global dewetting process. 

An important result of this study is that 

1) strain inhomogeneities are much more pronounced than hitherto anticipated; 
they are associated with the granular microstructure of the material and are 
characterized by spatial variations on the sub-millimeter size scale; 

2) these strain inhomogeneities dominate the deformation field around a crack tip 
and control the fracture process, in that cracks tend to connect statistically 
distributed regions of high strain, if they are reasonably close to the crack 
propagation line; 

3) a domain of 1-3 mm in extent around the crack tip is totally dominated by this 
highly inhomogeniously deformed material, with the adjacent material 
undergoing large nonlinear deformations; 

4) the disintegrating region close to the crack tip is not likely to be describable in 
continuum terms, and needs to be modeled in a discrete fashion. 



1. Introduction 

Since the development of solid propellant rocket motors in the late 1950', an important 

operational and design consideration has always been the reliable functioning and readiness 

of both tactical and strategic missile systems. The most important and most difficult 

component of the system analysis has been the predictability or suppression of failure by 

the intitation and/or propagation of cracks in the fuel charge or grain. Such failures typically 

arise in the grain at "star points" or at the support interface of the grain to the motor case. 

Either situation is equally detrimental, because crack initiation can lead to propagation as a 

result of the highly transient pressure pulse during ignition, or during long term storage 

while awaiting deployment. For tactical missiles the exposure to under-wing use during 

readiness maneuvers provides an additional deliterious use environment. 

Two aspects of fracture analysis and prediction in composite propellants have concerned 

the mechanics community ever since the start of solid propellant use, and for neither has a 

satisfactory solution been found in the roughly four intervening decades: One addresses the 

experimental determination of the strain fields around the tips of cracks in these materials; 

the other is the computation of stress fields either form these strains or from other "first" 

principles. Virtually all analyses have been based on variants of linearly elastic analyses, 

which have long been known to provide estimates at best, since the nonlinear 

characteristics of the propellant materials have been well established for several decades. 

However, the means of dealing with that type of material characterization is not at all well 

in hand nor has it been developed for applications to motor design. 

1.1 A new way for stress analysis involving high strain (stress) gradients. 

For over three decades propellant stress analysis has been accomplished by means of finite 

element codes that started with linearly elastic material characterization. While specialty 

codes have been developed, to address nonlinear behavior of the material, they have neither 

been demonstrated in connection with appropriate experimental input, nor are the 

constitutive equations used for them particularly germane to propellants. All these 

computations have to be supplemented with a heavy dose of empiricism based on years of 

practical experience to make failure estimation roughly comparable with motor 

performance. 



The most common assumption underlying these analyses is that, in spite of its 

microstructure, the propellant is an essentially homogeneous material. The consequence of 

this assumption is that strain fields are smoothly varying and maxima — drivers of failure 

initiation — occur where continuum theory says they should occur. We shall see that the 

experimental analysis of this question tells us otherwise, and the variations in strain fields 

arising from inhomogeneities is indeed very significant. The consequence for failure 

prediction is then that such behavior needs to be incorporated into analyses. The question 

of how to do this is not answered simply. 

Typically propellants have been modeled as (homogeneous) continua. That approximation 

seem reasonable when the strain variations are not important in the fracture sense and when 

the domain considered is large in comparison to the domains in which inhomogeneities 

dominate. However, when these latter domain sizes are on the order of domains that 

determine fracture, such as at the front of a crack, then continuum representations are no 

longer appropriate. Attempts have been made over the past years to characterize the 

disintegrating material at the crack tip as a continuum with highly nonlinear properties, thus 

the odd situation arises whereby one discretizes the crack tip domain, tries to find a 

"smeared-out" ore average continuum model of the failing material, and then derives from 

that a failure criterion that comes close to the physical situation that is truly discreet in its 

failure aspects. 

Nonlinear behavior is widely observed in paniculate composites, such as solid propellants, 

tires, toughened plastics, even when global deformations are relatively small. Global 

nonlinearity in paniculate composites is often caused by cavitation or tear (appearance of 

voids in the matrix) and/or by interfacial particle debonding or "dewetting"; see 

Schippel(1920), Smith(1959), Farris(1964), Oberth (1967), Knauss and Mueller (1979) 

and Gent and Park (1984). Dewetting and interfacial void generation occurs when the bond 

at an interface is relatively weak; otherwise cavitation can occur. How to represent this 

damaged-material behavior in continuum terms for finite element analyses has been a long 

standing question. Constitutive models containing damage have been proposed, for 

example, by Farris and Schapeiy (1973), Schapery (1986), Govindjee and Simo (1992), 

Vratsanos and Farris (1993) and Ravichandran and Liu (1995). However, these models, 

excepting that Govindjee and Simo (1992), are typically restricted to infinitesimal 

elastic/viscoelastic matrix behavior, and therefore their applications in regions of high 

deformation gradients such as a crack tip, are, at best, questionable. More importantly, 

one must critically examine  the  implied  proposition  of first  representing   a truly 



discontinuous process by a homogenized continuum formulation and then turn around and 

formulate a new local failure criterion that addresses the crack propagation process by 

means of the homogenized material description in such a way that the true physical process 

of the discrete micro crack growth and coalescence is reproduced faithfully near the crack 

tip. 

Figure 1: Above: Tripartition of the crack tip domain, with local discrete behavior at the 
crack tip, nonlinear continuum response farther away, and linear behavior over the rest of 
the large solid. Below: Detailed account of the crack tip region close to the crack tip. Dark 
areas represent voids, gray areas binder and white particles. 



An alternate way to crack tip characterization, that circumvents this circuitous route for 

computing involving two approximation schemes is, thus, to feat the zone around the 

crack tip in a discrete fashion, that is, ultimately with statistical particle distributions, and 

deal with the failure around individual particles. 

It appears, therefore, more reasonable to characterize the material locally near a crack tip in 

a discrete manner by modeling a select region of the high strain gradient domain through 

discretely failing elements embedded in another and larger region of nonlinear and/or linear 

material response. Here failure sites ultimately become the fracture sites by which a crack 

propagates through void coalescence. Such a hybrid discrete-continuum approach appears 

feasible in light of the ever more rapidly increasing power of computing machines. We thus 

pursue here initially the time-independent (non-viscoelastic) problem of the dewetting 

process allowing for large deformation in the matrix material, and with the intention of 

incorporating the results into a larger finite element analysis for crack growth studies in 

paniculate composites. 

Figure 1 shows such an approach graphically: A small zone around the crack tip is modeled 

with individual particles, the next farther (but "close in") domain from the crack tip as a 

continuum possessing nonlinear characteristics, and the remainder of the structure is 

sufficiently well characterized by linear behavior since the strains tend to be rather small 

there. 

1.2. Experimental definition of the discrete analysis domain 

Experimental observations are necessary to assess the size of the domain within which 

dicretization of particulate mechanics is appropriate. This endeavor was the first part of the 

project and revolved around microscope studies of deformations and strain determination 

through the Digital Image Correlation Method (DIC). In this we concentrated on the 

microdamage evolution and its interaction with small cracks. One observes clearly that the 

deformation in solid propellants is inhomogeneous at the length scale of particles 

(especially in high deformation regions, e.g. near a crack tip), while the deformation is 

"homogeneous"   at  a  larger  length  scale.   Experimental   observations   indicate   that 



microdamage-induced heterogeneity plays the dominant role in crack propagation and the 

strain distribution field near a crack tip. 

The Digital Image Correlation Method. 

Because the modifications to the original Digital Image Correlation code (DIC) sought here 
are closely tied to the inner workings of the algorithm for the two-dimensional con-elation 
scheme, the latter is summarized briefly. A three-dimensional extension to the code is 
presented in "Submicron Deformation Field Measurements Part II: Improved Digital Image 
Correlation" by Vendroux, G. and Knauss, W.G Experimental Mechanics, 38, No. 2, pp. 
86-92, June 1998. 

Two-dimensional Digital Image Correlation 
A surface profile, as obtained, for example, by a Scanning Tunneling Microscope, is a 
discrete record of the "height" of the surface at grid points assigned to a specimen surface. 
Let f(x,y) represent the surface profile of a specimen in an undeformed state at point 
G(x,y), and g(jc, y) the surface profile after deformation at the corresponding point 
G(x, y). If the profile pattern before deformation is uniquely related to the profile pattern 

after deformation, a correlation of these two patterns exists to detect the profile difference 
which represents the object deformation. Let % be the mapping from the undeformed to the 

deformed configuration 

G->G = x(G)     such that    g(x, y) = f(x,y) (1) 

or 
x = x + u(x,y) (2) 
y = y + v(x,y) 

with u and v the in-plane displacements of G, and let G0(x0,yQ) be the image of G0(x0,y0) 

through x; further, let S be a (sub)set of points around G0 and S the corresponding (sub)set 
of point around G0. Assuming that S is sufficiently small, eq (2) can be expanded into 

x = x + u(x0,y0) + —\Xotyo(x-x0) + —\Xo^(y-y0) (3a) 

dv dvi 
y = y + v(x0,y0) + —Xt,yt(x-x0) + —\Xt<yt(y-y0) (3b) 

as the linearization %, of % around G0. For a discrete set of data define the correlation 

coefficients 



^Jfm-gWGM (4a) 

la.«?™ 
or 

■ _, la.,sf(GMX,(G,)) (4b) 

It is clear that C will be zero when the coefficients of the mapping x, {••••} are indeed the 

displacements and their derivatives at G0 [4, 8]. The best estimate of these values are 
determined by minimizing C, which process can be viewed as a non-linear optimization 
scheme, some details of which will be discussed in section 3.2 under "Optimization 

Scheme". 

2. Analytical 
The numerical work has centered on developing segment or elements containing particles, 

which undergo the dewetting process. The issues for resolution were primarily the stability 

of the dewetting process in the computational model. We believe that this problem is now 

well in hand. In a similar vain, the stability of cracks branching from the dewetting void to 

fracture the binder is similarly handled. As a result of this research it has also become clear 

that a somewhat coarser modeling of the dewetting/fracture process is tolerable. It is, by 

now, abundantly clear that the proposed scheme of highly detailed particle induced failure 

around crack tips can be treated numerically with the currently available (parallel) 

computing systems. Moreover, problems smaller than full-scale motor applications can be 

addresses probably without parallel processing. This assessment is based on our 

experience that less refined damage models around particles can now be constructed. 



3. Report content 

In the following development the experimental work is presented first. That presentation is 

followed by a delineation of the numerical modeling. However, because these studies have 

been already documented in written reports and publications they are only abstracted and 

summarized here, with the full papers denoted by an asterisk '*' attached as appendices. 

3.1. Strain Inhomogeneitv and Discontinuous Crack Growth in a 
Particulate Composite. 

This topic has been documented as an Aeronautical Engineer's Thesis under the title: 

Gonzales, J.; 
Full Field study of Strain Distribution near the Crack Tip in the Fracture of 
Solid  Propellants   via  Large Strain  Digital   Image  correlation   and Optical 
Microscopy; Engineer's Thesis, 1996, California Institute of Technology, Pasadena, CA 
91125 

Abstract 
A full field method for visualizing deformation around the crack tip in a fracture process 

with large strains is developed. A digital image correlation program (DIC) is used to 

incrementally compute stains and displacements between two consecutive images of a 

deformation process. Values of strain and displacements for consecutive deformations are 

added, this way solving convergence problems in the DIC algorithm when large 

deformations are investigated. The method developed is used to investigate the strain 

distribution within 1 mm of the crack tip in a particulate composite solid (propellant) using 

microscopic visualization of the deformation process. 

A paper based on that work will appear in September 1998 in the International Journal of 
Solids and Structures: 

Gonzales, J. and Knauss, W.G.; 
Strain  Inhomogeneity   and Discontinuous   Crack  Growth   in   a  Particulate 
Composite*; 

Abstract 

A full field method for visualizing deformation around the crack tip in a fracture process 

with large strains is developed. Digital Image Correlation (DIC) is used to incrementally 

compute strain and displacements between consecutive images in a global deformation 

process. Values of strains and displacements for consecutive deformations are added, this 



way solving convergence problems in DIC algorithm when large deformation are 

investigated. The method developed here is used to investigate the strain distribution within 

lmm of the crack tip in a paniculate composite solid propellant. It is shown that in 

"nominally" homogeneous deformations (unidirectional deformation of a propellant sheet) 

the strains vary over a range of a factor of three, with the average corresponding to the 

global strain defined as the ration of boundary displacement and the specimen width or 

height. In crack propagation studies such high strain regions are the loci for crack 

propagation. 

A second presentation of essentially the same material entitled 

Strain Distribution around Cracks in Damaged Particle-Filled Elastomers 
has been made by J. Gonzales at the 1997 Composite Conference held at Hawaii in July 
1997. 

The standard use of the Digital Image Correlation (DIC) works well to investigate 

deformations where the maximum principal strain is less than 10%. For studying 

deformation when this limit is reached, it is necessary to use additional tools like the Large 

Deformation Digital Image Con-elation (LD-DIC). This method performs well using the 

standard DIC in a stepwise manner, following the deformation history. Results for two 

tests on a particle-filled elastomer are presented using the LD-DIC. The strain associated 

with void-opening in a particle-filled elastomer (solid propellant) is addressed in the first 

test while the effect of damage on the strain distribution in a crack opening problem for the 

same material is investigated in the second situation. 

3.2. The next papers cover the numerical/analytical work on the deformation of 
damage mechanics in participate filled composites. 

This phase of the research addresses the micromechanics of a dewetting paiticulate 

composite to model both the failure progression as well as the global force-displacement 

(stress-strain) response. The idea is that such a model becomes the small-scale "finite 

element" for a larger propellant domain in which damage and failure progress as coupled to 

the nonlinear response of the local material. 



The first paper is 

Zhong, X.A. and Knauss, W.G. 
Analysis of Interfacial Failure in Particle-Filled Elastomers* 
Journal of Engineering Materials and Technology (ASME Transactions); 119, pp. 198- 
204, July 1997 (presented at the 1997 ASME/ASCE/SES Joint Summer Meeting at 
Northwestern University, McNu'97) 

Abstract 

The evolution of microdamage (interfacial dewetting) in highly filled elastomers under 

consideration of high deformation gradients is examined with the aid of the ABAQUS code 

in a two dimensional setting. The interface between hard (rigid, two dimensional) 

inclusions embedded in an elastomer characterized by a three-term (rate insensitive) Ogden 

model, is represented by a cohesive-zone type interfacial model to follow the whole process 

of interfacial dewetting and its effect on the global (multiphase) material response in plane 

strain. The analysis is earned out through a mixed finite element formulation for 

hyperelasticity, incorporating interface elements. We consider the effects of particle 

geometry and loading conditions on the process of interfacial failure. The results indicate 

that the distributed failure process is highly unstable and depends heavily on the size, 

shape, orientation and interactions of inclusions as well as the global loading conditions. 

The overall material behavior of the model agrees qualitatively with experimental 

observation this instability discovery has prompted the investigation considered. 

Zhong, X.A. and Knauss, W.G; 
On the Stability of Phase Separation in a Finite Solid with Interfaces*; 
Accepted for publication in Mechanics of Composite Materials and Structures. 

Abstract 

The stability of homogeneous phase separation in finite solids containing planar, cylindrical 

or spherical interfaces is investigated analytically. Explicit stability conditions are deduced 

for each interface geometry. It is shown how the interaction of load (force or displacement) 

material properties of the phases and interface properties jointly determine the stability of 

the interface separation process. 



Zhong, X.A. and Knauss, W.G; 
Effects of Particle Interaction and Size  Variation on Damage Evolution  in 
Filled  Elastomers* 
Submitted to "Mechanics of Materials". 

Abstract 

A micromechanical analysis of damage evolution (interfacial debonding) in paniculate filled 

elastomers addresses the effect of the interactions between particles and of the variation in 

filler size. The composite is treated as an assembly of two constituents in a finite element 

model. The interaction between particles controls the damage evolution: (1) For high 

volume fractions, a relatively small change in particle size has a surprisingly large effect on 

the local material response, (2) for large differences in particle sizes (e.g bimodal 

distribution), damage occurs at interfaces between large particles and the matrix, with 

limited damage occurring at the small particles. While these effects of particle interaction 

and size variation are smoothed out in a large ensemble of particles, it is foreseeable that 

they are an important factor in a failure process such as macroscopic crack propagation, 

which spans scales considerably larger than the maximum particle size. Specifically, one 

expects thus that in the vicinity of a macroscopic crack the large particles become the sites 

for small cracks which coalesce to larger ones and join up with the macro crack, while the 

small particles operate primarily so as to locally stiffen the matrix without incurring 

significant damage in their vicinity. 
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STRAIN INHOMOGENEITY AND DISCONTINUOUS CRACK GROWTH IN A 

PARTICULATE COMPOSITE 

JAVIER GONZALEZ and W. G. KNAUSS 

Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, 

CA 91125, U.S.A. 

ABSTRACT 

A full field method for visualizing strain fields around a crack tip under large 

strains is developed. Digital image correlation is used to compute strains and 

displacements incrementally between consecutive images in a process of large 

deformations. Values of strain and displacements for these consecutive deformations are 

added such that convergence of the DIC algorithm is assured. The method is used to 

investigate the strain distribution in a globally homogeneously strained particulate 

composite (solid propellant) as well as in a zone close to (~2 mm) the crack tip in such a 

material by using a microscope. It is found that maximal strain variations deviate by as 

much as a factor of three from the average strain; additionally, observations on the 

interaction of strain inhomogeneities with the tip of a macroscopic crack are discussed. 

Keywords: A. fracture, A. strain localization, B. inhomogeneous material, B. viscoelastic 

material, C. digital image correlation. 



1. INTRODUCTION 

Particulate composites are widely used in engineering. In the automotive industry, 

for example, carbon black filled rubbers are used in tires. Many injection molded 

materials are filled with small particles, while other rigid polymers are toughened through 

the addition of rubber particles. Solid propellant rocket fuels are physical mixtures of 

mostly ammonium perclorate and aluminum powder, often in a multimodal size 

distribution, bonded together by a rubber phase called the matrix. Failure in all these 

materials is heavily dependent upon the interaction between the particles and the matrix, 

specifically on the separation of particles and binder. Failure also depends on the volume 

ratio of particles to matrix, which is typically close to 75% in solid propellant materials, 

but only in the range of 15 to 40% in structural polymers. In the sequel we examine the 

failure progression in a solid propellant (Triokol TPH 1011). Application of continuum 

mechanics to the stress/strain analysis of structures made of these types of materials 

typically invoke macroscopically homogeneous material performance, even though 

deformations are anything but homogeneous at the size scale of the particles. We shall 

see that inhomogeneous deformations occur at a size scale that is significantly larger than 

the largest particle, and that the failure process is directly related to the micro-structural 

deformations associated with these inhomogeneities. 

Measuring large strains over small domains of tens to hundreds of microns is not 

a trivial matter. Imprinted grids tend to serve well at a size scale just above what is 

required here. Determining the micromechanical deformation with the aid of optical 

microscopy, e.g. at the tip of a macroscopic crack, implies the need to extend the 

presently available tools of strain measurements. In principle the digital image correlation 

method [Sutton et al, 1983, 1985, 1986 and 1989], [Vendroux / Knauss, 1994] is ideal 

for this purpose except that it is not suitable if the deformations are so large that 

convergence of the correlation algorithm is no longer guaranteed: We shall see that 

deformations involving strains much in excess of 10% cause convergence failure of the 

DIC algorithm. On the other hand, strains on the order of 50% to 100% are typical for 

crack propagation problems in the materials of interest here. Accordingly we develop an 



incremental application of the DIC method that is capable of analyzing large deformation 

histories. This development is first addressed in section 2, and followed, in section 3, by 

a discussion of the experimental setup for two sets of experiments: The first experiment 

addresses, in section 4, locally inhomogeneous deformations in a globally homogeneous 

deformation field, and the second examines the deformation field around the tips of a 

(slowly growing) crack in section 5, with particular interest centering on the 

inhomogeneity of the material response in the immediate crack tip region. The paper is 

summarized with concluding remarks in section 6. 

2. DIGITAL IMAGE CORRELATION 

Developed by Sutton and his colleagues [1983, 1985, 1986 and 1989] and 

improved by Vendroux and Knauss [1994], the digital image correlation (DIC) program 

is used to measure the displacement field and its gradients from images of an undeformed 

and deformed body. These are gray level images consisting of a grid of pixels, (typically 

640 by 480) with eight-bit gray levels (0 to 255 levels). In the sequel we discuss 

problems arising with large deformations and a remedy to the situation through a step- 

wise method we call Large Deformation Digital Image Correlation (LD-DIC). 

2.1. Effect of Strain Level in Code Convergence 

The problem in applying the DIC program to compute strain distributions in a 

large deformation process is, essentially, the failure of the DIC algorithm to converge 

from an initial solution estimate. The reasons for non-convergence may be diverse. The 

two major ones are changes of shadows from a fixed light source coupled with large 

motions of the surface, and, in the present case, possibly an inhomogeneous evolution of 

the deformation images. If one considers that the (rate of) convergence depends on the 

closeness of an initial estimate for the result (see the study on the radius of convergence 

by Vendroux and Knauss (1997) it becomes reasonable that failure can occur at even 



moderate strains. Clearly, more definitive rules for code failure or success depend on the 

specific experimental conditions. 

To assess the effect of the strain level on the convergence of the DIC code, 

consider a test on a homogeneous silicone rubber sheet stretched uniaxially, for which the 

resultant undeformed and deformed images associated with stretches from 0% to 40% are 

compared with the aid of DIC. For each deformation the strains and displacements were 

computed at 300 points. The fraction of points at which the numerics for the correlation 

optimization converged is presented in Figure 1 as a function of the Lagrangian strain. 

20 

Strain Level (%) 

Figure 1. Successful convergence of the DIC algorithm as a function of (Lagrangian) 

strain level. 

It is apparent that for deformations in excess of 10% a pronounced decrease 

occurs in the number of points with successful convergence. For the purpose of studying 

cracked solid propellants, where typically strains in excess of 30% need to be measured, 

the applicability of the standard DIC method is thus seriously compromised and a new or 

extended analysis tool is required. 



2.1. The Large Deformation Digital Image Correlation Method 

To illustrate a proposed Large Deformation Digital Image Correlation (LD-DIC), 

consider a sequential deformation process on a body: Initially undeformed, the body 

undergoes a continuous deformation, called the "global deformation". Consider three 

configurations of the body at three different instants during this global deformation. The 

first configuration describes the undeformed state of the body and the second a deformed 

state under a set of changed surface (and body) forces. Call this first segment of the 

global deformation "deformation A". Next, an increment in the surface and body forces 

deforms the body further, this next incremental deformation being designated by "B". 

The state of the body after deformation B is represented by the third configuration. Each 

configuration corresponds to an experimentally determined and temporally ordered set of 

images, say, the 1st, 2nd and 3rd'. We select load parameters such that, by assumption, the 

DIC code can converge successfully to the proper increments of displacements and 

displacement gradients for the two separate deformations. However, the strains between 

configurations 1 and 3 (global deformation) are presumed larger than those that cause 

convergence failure. The LD-DIC method computes the deformation for the third state 

from the deformations in the two separate steps. To this end compute the global 

deformation gradient tensor Fgi0bai as the product of the individual deformation gradients 

Fgiobai = FB FA (1) 

The DIC program determines the displacements of deformation A and their 

gradients for a discrete set of points Gj defined on a rectangular grid with respect to the 

first (reference) configuration. For demonstration purposes, these points are represented 

in configuration 1 in Figure 2 as a coarse rectangular grid. At the end of deformation A, 

material particles of the body at the grid points have moved to the points  G{ in 

configuration 2 as signified by the non-orthogonal grid. By comparing the position of the 

points Gj and G \ in configurations 1 and 2 the DIC program yields the displacements uA \ 



and vA i, and the associated gradients ux
A, vy

A, uy
A and vx

A where the index "i" signifies 

the individual initial positions of the Gj. 

Configuration 1 Configuration 2 Configuration 3 

/ X 

G 

Deformation A 

Global Deformation 

Figure 2. The interpolation process. 

The displacements and displacements gradients are computed in a Lagrangian 

reference frame the coordinates of which are X = {Xu , X^}. Upon denoting the 

displacement components as UjA the motions of the material points are then represented 

by 

G,.(Xj)=G,.(Xi)+ui
A(Xi)      , (2) 

During the second deformation (B), the displacements and their gradients are 

computed for a different set of material particles which are located in configuration 2 at 



the grid points  Kj  of an orthogonal grid, shown in Figure 2 as the fine grid. In 

deformation B these points are mapped onto the set Kj in configuration 3. K} is again 

represented in the Lagrangian reference frame Y; = {Yn , Y2i} of configuration 2 as 

f.(Yi)=^.(Yi)+uj
B(Yi) (3) 

To obtain the global deformation (A+B) it is necessary to assure that the material 

points of the first deformation are the same as for the second one. It is thus necessary to 

interpolate the results from the DIC for deformation B onto the locations of the material 

particles or grid points of the first (reference) configuration to obtain the displacements 

and their gradients uB
{, vB\, uA vy

B, uy
Bi and vx

B relative to configuration 1. The 

interpolation at the coordinates G, is achieved by constructing a set of piecewise 

continuous surfaces from bilinear patches (plane surfaces). These are determined from 

the coordinates   Kj of configuration 2 so that the displacements and displacement 

gradients of the initial set of material points are now known. 

Using the subscript "gl" to denote global variables, one finds the global 

displacement components as 

ugl=uA+uB 

VgI=vA+vB. (4) 

and their gradients are, upon invoking the tensorial relation (1), 

r      -, A   ,        B   , AB, B      A 
lUx\gl=

Ux     + Ux     +"x   Ux     + Uy   Vx 

r      ^ A   ,        B   ,        AB,        B      A 
| v  1 ■ = V     +V     +V    V     +v    u lvy\gl        vy     ^ vy yy    yy "x   **y 

r       -i A   , B   , AB, B      A 
[Uy]g, =Uy     +Uy     +Uy   ux    +Uy   Vy 

r      -. A    ,        B    , AB, B      A /CN [vjg,=v,   +vx   +ux vx  +vy vx (5) 



From which the (global) two-dimensional Lagrangian strain tensor derives, by 

definition, as 

2ExX = 2[Kjgi + {[ux]/ + [vjgi2 } 

2Eyy = 2[Vy]gl +   { [Uy]/+ [Vy]/   } 

2Exy =     {    [Uy]$    +   [Vjgl     }+   {[Mjgl   [Uy]$l +  [vjgl   [Vy]gl   } (6) 

Here the displacement gradients of the displacement "w" normal to the surface 

have been neglected. This is permissible (even) for this situation of "plane stress" since 

under these large deformations the propellant material voids considerably so that the 

effective Poisson ratio is rather small, thus giving rise to only small gradients. For a 

global deformation requiring more than two steps the same is applied consecutively such 

that he second-to-the last increment is treated like the first one in the two-step example 

outlined here. 

When more than two steps are needed for field evaluations there arises a loss of 

information at the boundary. This is the result of interpolating information near and 

internal to the boundary. As more and more steps are required the information near the 

boundary becomes increasingly corrupted due to the interpolation process and thus 

information is lost there. This loss is evident in the field images presented later on as 

apparent white-out regions along a boundary, including the flanks of a crack. 

Minimization of this feature still requires future attention. 

2.3. Verification of the Scheme for Addition of Fields 

In order to check the efficacy of the proposed multi-step scheme we examine 

experimentally a specimen of homogeneous silicone rubber without a crack and coated 

with microscopic speckles, stretched sequentially and uniaxially to a maximum 

(Lagrangian) strain of 0.70 in a sequence of 12 deformation steps of 3-4% strain each (13 



images). These strains were recorded (optically) with the aid of a microscope by keeping 

track of special markers (= prescribed strain). Also, by using the information generated 

by the DIC program for every sub-deformation and the Large Deformation DIC method, 

the strains corresponding to images 1 and 2, images 1 and 3, etc., were computed, up to 

the deformation of image 15 relative to image 1. 

70 r 
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"as 
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10 20 30 40 50 

Optically Measured Strain (%) 
60 70 

Figure 3. Comparison of strains determined optically and by the LD-DIG method; the 

solid line is the ideal relation. 

Figure 3 shows the result as a comparison of the (optically) prescribed strain and 

the Large Deformation DIC computed (Lagrangian) strains. The maximum deviation 

occurs at a strain of 40%, amounting to only a 1% difference between the strain 

determined through the microscope and by the large deformation DIC method, a 

precision that is very acceptable for experimental mechanics investigations. 



3. EXPERIMENTAL SETUP FOR DEFORMATION STUDIES 

The equipment used for the experimental work on the paniculate composite (solid 

propellant) has been described elsewhere in detail by Gonzalez, (1997). Includes a 

straining stage driven by a stepping motor through a flexible cable. The straining stage is, 

in turn, mounted on a positioning stage, for which a joy-stick controller allows the 

positioning of the straining stage under the objective of a Nikon microscope 

(Measurescope MM-22), a CCD camera and a personal computer with a frame grabber 

unit. 

CCD 
CAMERA 

FRAME 
GRABBER 

'" 

MICROSCOPE 

PC 

V 

SUN 
WORKSTATION 

specimen 

STEPPING 
MOTOR *—! 

STRAIN STAGE      " 

/° TRANSLATION 
STAGE 

!—H 
JOYSTICK 

DEVICE 

Figure 4. Schematic of the Experimental Setup 

The images from the experiment are processed on a Sun workstation. A schematic of the 

experimental setup is shown in Figure 5. 
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4. LOCALLY INHOMOGENEOUS DEFORMATIONS IN A GLOBALLY 

HOMOGENEOUS DEFORMATION FIELD. 

Before considering the problem of the strain distribution around the tip of a crack 

we examine the inhomogeneity of strains in a solid propellant sample subjected to 

uniform deformations at the specimen boundary (globally homogeneous deformation). To 

this end a sheet sample of propellant [5 cm x 2 cm x 0.3 cm] is strained uniformly in the 

direction parallel to the 2 cm dimension; after normalization by the 2 cm dimension that 

boundary displacement is called the "applied strain". In Figure 5 we show a 2.5 mm x 

2.55 mm field from the center region of the specimen as resolved through a microscope 

and deduced with the aid of the LD-DIC algorithm. The false color scheme clearly 

identifies the inhomogeneous character of the strain field, and from this map it is quite 

clear that the variations in the strain values are not only very significant, but that the 

"material properties" vary to a like degree in these regions. 

It is of interest to dwell briefly on the scale of the inhomogeneous regions. While 

the latter are not sharply defined, it is, nevertheless, clear that these domains are 

measured in terms of millimeters and not microns. One might argue that a variation in 

properties in a small region (a hole or a hard, well-bonded particle) embedded in a 

homogeneous field renders deviation from that field several times larger than the defect 

itself. The reference problem of a circular hole in an elastic infinite sheet suggests that a 

noticeable perturbation in its vicinity is on the order of three times its diameter. While it 

is not our purpose to analyze in detail here the precise origin of every inhomeogeneity, be 

it one of larger strain than the average or of a smaller value, it appears clear that these 

inhomogeneities are produced either by clusters of particles or by the presence or absence 

of individual ones. 

To quantify the inhomogeneity of the strain field further, consider a plot of the 

strain along the line in Figure 5 as shown in Figure 6. The magnitude of these strains vary 

11 



by as much as a factor of three, although the average of the strain in Figure 6 represents 

closely the applied global strain of 1.5 %. 

The distribution of these inhomogeneities defines a macroscopic size scale below 

which the assumption of homogeneous material properties is not justified. Stated 

alternately, in order to be able to assign homogeneous properties to such a composite it is 

necessary to deal with a size scale that is several times larger than the spacing between 

the regions of inhomogeneity. That region is, however, at least on the order of five mm or 

more. 

0.04 i- 

0.035 

0.03 

0.025 

£   0.02 

0.015 

0.01 

0.005 

0 J L '     ■    *- I I J i i i 1 
0.5 2.5 1 1.5 2 

Y(mm) 

Figure 6. Eyy Distribution along the trace x= 1.4mm in Figure 5, parallel to the tension 

axis. 
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We shall see that this size scale is important in the analysis of the failure/fracture 

process considered next, since in this context this size limitation emphasizes the 

dependence of the fracture process on the statistical nature of the medium. 

5. THE STRAIN FIELD NEAR THE TIP OF A CRACK 

Having examined the distribution of strains in a globally homogeneous 

deformation field we turn next to examining the deformations in the close vicinity of a 

crack tip. We describe first the experimental set-up and then proceed to the analysis of 

the results. 

5.1. Experimental Aspects 

A cracked specimen of solid propellant TPH 1011 is deformed globally at a 

constant strain rate 0.001 1/sec in the direction perpendicular to the crack. The crack, cut 

initially with a razor blade, opens commensurately. Its opening process is monitored 

through a microscope at 25x power. Five digital images of 640 x 480 pixels, representing 

4 mm x 5 mm of the specimen surface were acquired every 10 seconds, corresponding to 

global (Lagrangian) strains of Eyy =0%, 1%, 2%, 3% and 4%. 

After 
Loading      ■—■—>. V 

Before 8        8        8 Area of 
 -—Observation 

Loading 4mm x 5mm 

o         o         o 

Figure 7. Specimen geometry and straining of a specimen. 

The dotted lines represent the deformed geometry. 
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Figure 5: Inhomogeneous strain distribution in an integral specimen "homogeneously" 

deformed to 1.5% Global Strain1. 
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Figure 8: Maximum Principal Strain Distribution for 2% Global Strain. 

Note that the red domains surrounding the (green) high strain regions are the result of clustering of the red 
contour lines, not strain concentrations in themselves. 
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Although each of the images, excepting the first, is associated with different 

deformations we select here only two loads or deformation levels for illustrative 

purposes. Application of the (multi-step) LD-DIC code renders deformation maps as 

shown in figures 8 and 9. 

Recall that because the multi-step method looses information at the boundary in 

each step the crack appears wide open and as having a very blunt tip. This appearance is 

the consequence of the multi-step method, so that Figures 8 and 9 do not represent the 

crack opening shape correctly; instead the shape has been sketched in as outlines. 

5.2. Results 

We demonstrate results for the global strain of 2 and 4%. While deformations at 

higher load levels can be obtained, their interpretation is more troublesome since it 

involves (more) motion of the crack tip. As an example we present (false color) plots of 

the maximum principal strain at 2 % global deformation in Figure 8 and both the 

maximum and minimal principal strains for 4 % in Figures 9a and 9b. The two strain 

levels are presented primarily to afford a comparison for two progressively larger strains. 

By comparing Figures 8 and 9a one can readily see how the inhomogeneities develop 

early and essentially grow in intensity with the global strain. In passing from 2 to 4 % of 

global strain, a small amount of crack growth has taken place as is evident from 

comparing Figures 8 and 9a. 

As before, the amplitude of the (Lagrangian) strain is represented by colors and 

contours and the small lines represent the orientation of the corresponding principal axes. 

Note that although the maximum principal axes should be basically parallel to the applied 

global displacement(s), at least in the region ahead of the crack tip, there are numerous 

locations where marked differences occur from this orientation. These differences are 

associated with the material strain inhomogeneities discussed in section 4. The same 

observation applies to the map of the minimum principal strain in Figure 9b for which the 

orientations 
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(small line segments) are generally orthogonal to those for the maximum principal strain. 

Also, compare the scale associated with the inhomogeneities and the distance of the high 

strain region relative to the crack tip. It is clear that the strain inhomogeneities cannot be 

separated from or submerged in the strain field of the crack tip: The crack tip strains are 

intimately connected with the scale of the material inhomogeneity. We note in particular 

that at this size of the viewing field the lobes that are part of the typical crack tip strain 

field for isotropic and homogeneous material are absent in the domain of observation or 

at most apparent in vestigial form; they are present only outside of the 2.5 mm x 2.5 mm 

observation area. 

One feature of interest and identifiable in figures 8 and 9 is the localization of 

high strain within a roughly circular area of 0.5 mm radius around the crack tip. Figure 8, 

which shows the maximum principal strains and directions for 2% far field strain, shows 

deformation localization around the crack tip in two locations. One, partially visible, is 

centered on the current crack tip (at x=0.7mm, y=l.lmm) and about 150 microns in 

radius. The other concentration is centered on the position (0.7mm, 0.8mm), where it 

reaches a maximum principal strain of about 11%. However, that location does not 

become a part of the crack propagation process as is evident by its persistence in Figure 

9a. Adjacent to these strain concentrations is a domain of about 5% local strain which 

includes the position (1.1mm, 1mm) where the orientation of the maximum principal 

strains is nearly aligned with the crack rather than being normal to it2. At this position a 

void develops under subsequently increased deformation. This void is visible in Figure 

10, which represents the image of the specimen for a 5% global deformation. 

We have dwelled on these details to some extent in order to demonstrate that the 

observation of the surface of the failing material is not always indicative of how and 

where the crack is likely to propagate. Because one identifies strain inhomogeneities on 

the surface, it stands to reason that similar distributions exist through the thickness of the 

2 Similar situations prevail in Figure 7 at locations (1.6 mm, 0.9 mm), (2.1 mm, 1.1 mm) and (2.2 mm, 1.6 

mm). In these regions the strains remain small, indicting that they are associated with rigid domains inside 

the specimen and under the surface. 

17 



specimen. Thus, the observations offered here point to a truly three-dimensional process. 

However, it is quite clear that the domain in which the failure process is prominently 

operative is confined to a domain on the order of half, but not more than one millimeter. 

This observation agrees with the results of Liu [Liu, C.T., 1997] who observed a similarly 

confinement of the process zone to a very small region. So much is clear from these 

studies, only portions of which are reported here, namely that crack propagation occurs 

by opening up voids which are typically high strain regions, distributed statistically 

throughout the material, and through joining of these voids with the main crack. 

mm. 

$msm 

Figure 10. Micrograph of the crack tip region at a global strain of 5%. The "void" at the 

crack tip was a region of "small" (-5%) surface strain in Figure 8. 
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6. CONCLUDING REMARKS 

The method of digital image correlation has been extended to large deformations 

by dividing the strain range into intervals within each of which DIC converges. The 

sequential extension renders satisfactory results with deviations not exceeding 1% from 

the prescribed strain field. This method has allowed resolution of highly inhomogeneous 

deformations embedded in a globally homogeneous deformation field. It is then 

demonstrated that this method can be applied to the analysis of strains around the tip of a 

crack in a paniculate composite (solid propellant rocket fuel). 

The, perhaps, most striking result of that investigation is the surprisingly large, 

inhomogeneous variations in the local strain field in a globally homogeneously deformed 

solid propellant material. It is apparent that the inherent heterogeneity of the material 

plays a key role for distribution of strains around the crack tip and its propagation. A 

second important observation is the fact that most of the deformation related to the crack 

propagation process localizes in a region around the crack tip of only about 0.5mm 

radius. Although there exist strain concentration domains outside of this small region on 

or close to the specimen surface, these deformations are insufficiently high to cause void 

formation of the strain concentrations so that they do not become sources of coalescence 

with the macroscopic crack. There is evidence, however, that the three dimensional 

distribution of strain inhomogeneities through the thickness of the specimen plays a role 

that mimics their in-plane distribution. There is no reason to suppose otherwise for this 

kind of paniculate solid. Certainly some of the features visible on the surface are the 

consequence of single particles and particle agglomerations buried just beneath the 

surface. 
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Analysis of Interfacial Failure in 
Particle-Filled Elastomers 
The evolution of microdamage (interfacial dewetting) in highly filled elastomers 
under consideration of high deformation gradients is examined. The interface between 
hard (rigid, two-dimensional) inclusions embedded in an elastomer characterized by 
a three-term Ogden (rate insensitive) model, and the elastomer matrix is represented 
by a cohesive-zone type interfacial model to follow the whole process of interfacial 
dewetting and its effect on the global (multiphase) material response in a plane 
strain setting. The analysis is carried out through a mixed finite element formulation 
for hyperelasticity, incorporating interface elements. We consider the effects of parti- 
cle geometry and loading conditions on the process of interfacial failure. The results 
indicate that the distributed failure process is highly unstable and depends heavily 
on the size, shape, orientation and interactions of inclusions as well as the global 
loading conditions. The overall material behavior of the model agrees qualitatively 
with experimental observation. 

1    Introduction 
Nonlinear behavior is widely observed in participate compos- 

ites, such as solid propellants, tires, toughened plastics, even 
when global deformations are relatively small. Global non-lin- 
earity in particulate composites is often caused by cavitation or 
tear (appearance of voids in the matrix) and/or by interfacial 
particle debonding or "dewetting"; see Schippel (1920), Smith 
(1959), Farris (1964), Oberth (1967), Knauss and Mueller 
(1979), and Gent and Park (1984). Dewetting and interfacial 
void generation occurs when the bond at an interface is rela- 
tively weak; otherwise cavitation can occur. How to represent 
this damaged-material behavior in continuum terms for finite 
element analyses has been a long standing question. Constitutive 
models containing damage have been proposed, for example, 
by Farris and Schapery (1973), Schapery (1986), Govindjee 
and Simo (1992), Vratsanos and Farris (1993), and Ravichan- 
dran and Liu (1995). However, these models (except Govindjee 
and Simo, 1992) are typically restricted to infinitesimal elastic/ 
viscoelastic matrix behavior, and therefore their applications in 
a high deformation gradient area, such as a crack tip, are, at best, 
questionable. More importantly, one must critically examine the 
implied proposition of first representing a truly discontinuous 
process by a homogenized continuum formulation and then turn 
around and formulate a new local failure criterion that addresses 
the crack propagation process by means of the homogenized 
material description in such a way that the true physical process 
of the discrete micro crack growth and coalescence is repro- 
duced faithfully near the crack tip. 

By contrast, it appears more reasonable to characterize the 
material locally near a crack tip in a discrete way by modeling 
a select region of the high strain gradient domain through dis- 
cretely failing elements embedded in another and larger region 
of nonlinear and/or linear material response as illustrated in 
Fig. 1. Such a hybrid discrete-continuum approach appears fea- 
sible in light of the ever more rapidly increasing power of 
computing machines. We thus pursue here initially the time- 
independent (nonviscoelastic) problem of the dewetting process 
allowing for large deformation in the matrix material, and with 
the intention of incorporating the results into a larger finite 
element analysis for crack growth studies in particulate compos- 
ites. 

In addition to interfacial debonding, we consider here the 
formation and growth of voids, as well as their interaction in 
(high) strain gradients. The aim is to apply these physical mi- 
cro-phenomena to global failure in these types of composites: 
macroscopic regions of stress concentrations are to be repre- 
sented by an assemblage of micro-mechanically detailed 
"superelements," their individual force transmissions and fail- 
ure responses governing the failure procession of global com- 
posites. Thus our interest is not limited to unit-cell problems, 
but aims at much larger scale problems in order to address the 
failure/fracture process in particulate composites. Because the 
domain for this distinctly discrete process of failure has been 
shown to be very limited in extent (Liu, 1991; Gonzalez and 
Knauss, 1997) it may suffice to deal with a rather small number 
of "superelement," say on the order of 200 to 300. 

To this end one needs to characterize the debonding of parti- 
cles from the matrix material with the key issue being the char- 
acterization of the properties of a matrix-particle interface, in- 
cluding its failure response. This issue has been addressed re- 
peatedly, for example, by Ungsuwarungsri and Knauss (1987), 
Needleman (1987,1990), and Yeh (1992). Interfacial constitu- 
tive models are sometimes called cohesive-zone type models 
as they resemble the cohesive-zone model (Barenblatt, 1962; 
Dugdale, 1960) in fracture mechanics. There are basically two 
approaches to characterize an interface at the continuum level. 
One utilizes a nonlinear spring model to mimic the interfacial 
failure process; the other employs a potential for formulating 
an interfacial "constitutive relation." The common feature is 
that they relate interfacial tractions to relative displacements at 
interfaces. Here we employ a simple nonlinear foundation 
model which is similar to that of Ungsuwarungsri and Knauss 
(1987), the parameters of which can be ultimately determined 
by fitting numerical solution to corresponding experimental re- 
sults. We implement the proposed interfacial constitutive rela- 
tion through interface elements which have been widely used 
in computational contact problems, rock joints, concrete me- 
chanics; see for example, Beer (1985), Zubelewicz and Bazant 
(1987), and Schellekens and De Borst (1993). 

Though an elastomer is a time-dependent viscoelastic mate- 
rial, we consider the elastomer, for simplicity reasons, to be 
characterized by a hyperelastic Ogden material (Ogden, 1972). 
Because the elastomer matrix is soft compared to the particles, 
we consider the latter to be rigid.1 In order to gain insight into 

Contributed by the Materials Division for publication in the JOURNAL OF ENGI- 
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' This choice is made for convenience. Under high rate loading, the binder 
may be stiff by compression so that the particles will also deform. That case is 
computationally treatable as well, but requires larger computational resources. 
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Fig.  1   A discretely failing  region embedded  in a linear/nonlinear 
material 

this approach and to test numerical strategies, a two dimensional 
version of the problem is considered first. Furthermore the bond 
at interfaces is assumed to be "weak" so that only interfacial 
debonding needs to be considered (no cavitation in the elasto- 
mer). A three-dimensional problem description is left to future 
investigations; it is more demanding only in computational 
power. 

The numerical analysis of debonding at interfaces has been 
carried out by several authors, for example, Lo et al. (1994), 
Needleman (1987, 1990), Narasimhan (1994), Xu and Nee- 
dleman (1994), Yeh (1992) through two basic approaches: 
One is the so-called nodal release technique (Lo et al, 1994, 
Narasimhan, 1994), the other employs interface elements. The 
nodal release technique, though more frequently used, permits 
only a single node to be released at a time by reducing the 
reaction force at the crack tip node over several time steps and 
requires continual external monitoring and interruption of the 
regular finite element computation. In addition, the crack propa- 
gation path or debonding path has to be prescribed or tracked 
node by node which makes the application of the techniques in 
cases such as debonding at multiple particles rather complicated. 

Interfacial constitutive relations and interface element, on the 
other hand, can treat debonding at interfaces automatically. The 
present approach is similar to that of Needleman (1987). The 
main numerical challenges in the present work are that (1) the 
interfacial failure process in filled-elastomers is usually less 
stable than that in other types of particulate composites because 
of the relatively soft matrix (Zhong and Knauss, 1997) and (2) 
The local instability together with very large strains occur at the 
interfaces (tens to several hundred percent) raises convergence 
questions. 

In the sequel, we delineate in Section 2 the interface model 
along with the associated stability issue. The computational 

model is presented in Section 3 including the FEM formulation 
for hyperelasticity and the interface element. Numerical results 
are demonstrated in Section 4 for unit cell problems,2 to evalu- 
ate effects of inclusion (particle) size, shape and orientation, 
as well as of boundary loading and constraints on the response 
of a unit cell. In solid propellants, particle sizes vary randomly 
in a range, and they are statistically distributed (Gonzalez and 
Knauss, 1997). To account for this, we also analyze multi-cell 
problems, considering interactions among inclusions of identi- 
cal or different sizes. Additional numerical issues are discussed 
in Section 5 ending with conclusions in Section 6. 

2   An Interfacial Constitutive Model 
To imitate the failure behavior of cohesive interface material, 

the interfacial traction is assumed to increase with increasing 
interfacial separation to a critical value, after which the traction 
decreases with increasing separation and eventually vanishes, 
corresponding to total separation. We take here a damage me- 
chanics point of view by assuming that the interface will lose 
its stiffness as interfacial separation reaches this critical value 
(cf Ungsuwarungsri and Knauss, 1987). 

2.1    The Interfacial Constitutive Model.    Let n be the 
normal to an-interface, and s, t the corresponding orthogonal 
tangential directions; E„, Es and E, are elastic moduli of a nonlin- 
ear (dissipative) spring in the directions (n, s, t). The spring 
response is 

D = 
E° 0 0 
0 E°, 0 
0 0 E?] 

(1) 

as long as the normal separation Aun is less than the critical 
normal separation Auc. When AK„ > Auc, the spring moduli 
degrade according to 

D = 

E°   2 
AM„ 

Aur 
0 

Es{2 
Au„ 

A«, 

E,[2 
Au„ 

Auc 

for Auc < Au„ =s 2Auc, and vanish for A«„ > 2Auc. 
The nonlinear interface constitutive relation is thus 

f = DAu («*>> 

(2) 

(3) 

with AM the relative displacement in local coordinates (n, s, 
t) and f the conjugate interfacial traction defined in the unde- 
formed reference configuration. 

Only failure due to normal separations is accounted for in 
the current model. Obviously one needs to consider shear failure 
at an interface for more general situations. It is not difficult to 
include shear failure into the above interfacial model; see for 
example Tvergaard and Hutchinson (1993). However, for the 
type of problems under consideration, the shear strength of the 
interface is much larger than the tensile strength, so that we do 
not consider the shear mode failure in the present work. 

2.2    Stability of an Interfacial Failure Process    Suo et 
al. (1992) investigated the stability of solids containing inter- 
faces by considering two semi-infinite solids bonded along a 

2 We use this term frequently to refer to 1-inclusion problems (in finite do- 
mains) for notation convenience, even though the analysis does not always impose 
periodic boundary conditions that belong to a real cell. 
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planar interface by defining the instability of the system in terms 
of the onset of nonunique solutions to the associated boundary- 
value-problem. Zhong and Knauss (1997) have recently studied 
the stability of finite solids, with planar or circular interfaces 
under homogeneous decohesion (i.e., the whole interface de- 
bonds uniformly at the same time), deriving stability criteria for 
a general form of the traction-displacement interfacial relation 

f = f(Au). (4) 

For homogeneous decohesion at a bi-material planar interface 
the stability condition is 

2Ecl MAXo JÖL) 
dAu 

(5) 

where Aus corresponds to total separation at the interface. The 
right-hand side of inequality (5) represent the maximum value 
of -(df/dAu) when AH is in (0, Aus). It is clear that the size 
of the specimen (L), effective elastic modulus (£cff = E^Etl 
(£, + E2)), where Et and E2 are the elastic moduli of the two 
materials) and the unloading part of the interfacial relation (4) 
determine the stability of the system. A similar stability condi- 
tion is obtained for a circular interface (see Zhong and Knauss, 
1997). 

An interfacial failure process associated with inhomogeneous 
decohesion at interfaces is intuitively more stable than that asso- 
ciated with a homogeneous decohesion. This is so because the 
surrounding, bonded regions tend to stabilize the decohesion 
process. Thus the stability conditions obtained by Zhong and 
Knauss (1997), though applied only to homogeneous decohe- 
sion at interfaces, provide conservative estimates for the onset 
of instability in an interfacial failure process. It is also clear 
from the above stability condition (5), that the more compliant 
the matrix material, the less stable the corresponding composite 
is under interfacial failure. Thus paniculate-filled elastomers 
tend to be less stable than paniculate metallic composites with 
respect to the interfacial failure process. 

It should be noted here that the instability due to interfacial 
decohesion is local because of the sudden drop of tractions at 
the interfaces. This local instability poses a problem for the 
numerical simulation in a quasi-static setting because it can 
(and does) lead to the divergence of numerical computations. 

3   Formulation of the Computational Model 
We treat the matrix as a hyperelastic material characterized 

by a 3-term Ogden strain energy function for finite deforma- 
tions. For reference purpose, we summarize the hyperelasticity 
theory and its hybrid FEM formulation briefly. 

3.1   Hyperelasticity and Its FEM Formulation.   Let ft0 

be the undeformed reference configuration of the hyperelastic 
material(s), ft, the current deformed configuration, and V0 and 
V, the corresponding volumes. Xeft0, yeft,. Then 

y = X + u(X),   F = 
dy_ 
dX 

J = det (F). (6) 

Here u(X) is the displacement vector at material point X, F 
the corresponding deformation gradient and J the unit volume 
change. 

Because the hyperelastic material is (almost) incompressible, 
the deformation gradient F is multiplicatively decomposed into 
its deviatoric and dilatational parts for purpose of the FEM 
formulation. 

■p _ ■pdevpvo!    -pd 7""3F, Fvo1 = J"3I, (7) 

The strain energy function for a nearly incompressible hyper- 
elastic material is expressed as (Ogden, 1984), 

with I the identity tensor. It is easy to check that det (Fdev) = 
1, det (Fvo1) = J so that Fdcv is the volume preserving part of 
F, and Fvo1 its dilatation part. 

W(F) = W(Fdev) + cf>(J), (8) 

where W accounts for the deviatoric deformation and <fr with 
<j>( 1) = 0, for dilatational deformation. 

Considering frame indifference, and further assuming that 
the hyperelastic material is isotropic, we have 

W(F) = w(X,,X2, X3)+ <£(/), (9) 

where X, are the principal deviatoric stretches. 
Ogden (1972) assumes that w has the form (1972), 

N   ~ 

u,(\u \2, X3) = I -4 (*?' + *?' + *f. - 3)    (10) 
1-1    »' 

N 

so that the initial shear modulus is ßo = 2 fi: and the relation 

between Cauchy stress and the principal stretch is 

r, = X, 
dW 

ax,- 
dW 

3,^0X7 
■ d<KJ)\ 

dJ   ) 
(11) 

If the material is fully incompressible (7 = 1), we have </>(J) 
■■ 0, and the corresponding stress-stretch relation is 

r,=X,.^-P,. 
ÖX, 

(12) 

where F,- is an arbitrary pressure and X; are the principal 
stretches. 

For almost incompressible material, the usual displacement 
finite element formulation can behave poorly because the effec- 
tive bulk modulus is very large compared to its shear modulus, 
which cause the stiffness matrix to be almost singular from a 
numerical point of view. Consequently, the stress calculated at 
the numerical integration points show large oscillation in the 
pressure. To avoid this, a hybrid element or mixed formulation 
has been proposed (see for example, Simo and Taylor, 1991). 
Although extra (pressure or compressibility) variables are intro- 
duced in the mixed formulation, the effective degree of freedom 
at each node in the final FEM formulation are determined by 
displacements only, because the extra variables are eliminated 
at the element level. 

3.2 Interface Element. The interfacial constitutive rela- 
tion is implemented by constructing an interface element via 
the principle of virtual work (Beer, 1985): (1) Set up local 
coordinates (n, s, t) to describe the interface geometrically. 
(2) Find the relative displacements at the interface in local 
coordinates. (3) Use the principle of virtual work and the in- 
terfacial constitutive relation to obtain an equilibrium equation 
for the interface element in terms of global nodal coordinates. 
One then assembles the interface element stiffness matrix with 
remaining element stiffness matrixes to form the global stiffness 
matrix. 

Drawing on the interfacial constitutive relation and the princi- 
ple of virtual work, we have 

or 

I 
v mi 

BTfds = F' 

BTDBads = F', 

(13) 

(14) 

with F' the force vector for nodes of the interface element, 
a is the element displacement vector and B the transformation 
matrix between nodal displacements and displacement in the 
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local coordinates. The residual force due to the interface ele- 
ment is 

BTD(k)Bdsak 
(15) 

and the tangent stiffness matrix of the interface element is 

K -      dR K,_-_. (16) 

Here n refers to time steps, k refers to the sequence of iterations. 
For the interfacial relation (3), the tangent stiffness matrix 

for interface elements is nonsymmetric. Thus using the tangent 
stiffness matrix may be a source of numerical difficulty. 

We use direct iteration, which is expressed for the interface 
elements by 

I interface 
BTDk

nBds{Aa} 

7(k+ 

wint 
BTDk

nBds{ak
n)    (17) 

where a(„k+n = ak + Aa, n is the time step, k is the iteration 
index. The implementation of the FEM formulation for hyper- 
elasticity is available in ABAQUS 5.5. We incorporate the inter- 
face element (interfacial constitutive model) into ABAQUS via 
a user subroutine (user element). It should be noted that the 
interface element has zero thickness initially. 

4   Numerical Results 
We consider plane strain deformation of the "paniculate" 

composites. By preliminary choice the parameters in the Ogden 
function are determined from fitting experimental data of Tre- 
loar (1940). The parameters are /*, = 58.23, a, = 1.029, p2 = 
1.35 X 10 5, a2 = 10.707, ß3 = 0.246, a3 = -2.957. They 
satisfy the material stability condition. The parameters in the 
interfacial model are also determined quite arbitrarily for now, 
except that we choose the parameters such that the maximum 
/„ at an interface is of the same magnitude as that observed 
in relevant uniaxial tensile experiments (Vratsanos and Farris, 
1993). The specific parameter values chosen are E„ = 103 MPa, 
E, = 10" MPa and Awc = 10~5 m unless specified otherwise. 

A 4-node bilinear hybrid element with two effective degrees 
of freedoms (u, v) is used, along with the interface element 
described in Section 3.2. The numerical integration of the inter- 
face element stiffness matrix is carried out by a 2-point Gaussian 
quadrature. Due to the instability of the debonding process, all 
the numerical examples are displacement controlled. 

To validate the numerical scheme and to gain insight into 
the behavior of composites undergoing the evolution of micro- 
damage, we analyze several problems. First, computations are 
carried out for unit-cell problems to evaluate the influence of 
bond quality, the effect of the inclusion size (volume fraction), 
shape and orientation, as well as the boundary loading and 
constraints. Second, the interaction between multiple inclusions 
of identical or different sizes is investigated. 

In the following, stress refers to Cauchy stress if not specified 
otherwise, strain connotes nominal strain. 

4.1 Uniaxial Stretching of an Elastomer Containing a 
Circular Inclusion. A 3 mm X 3 mm square elastomer ele- 
ment containing a circular inclusion (radius 1.3 mm, volume 
fraction 59 percent) is analyzed in a sequence of displacement 
controlled deformations. In all cases, the boundary condition is 
mixed, i.e., a constant normal displacement is prescribed on 
two opposite sides and the remaining two sides are traction free. 

First the "global" stress-strain behavior of the element is 
compared for different bond qualities at the interface, namely 
unbonded, perfectly bonded and bonded according to the in- 
terfacial relation (3). These overall stress-strain responses are 
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also compared with that of a pure elastomer square and that of 
an elastomer square with a hole of radius 1.3 mm at the center. 

Figure 2 illustrates the global stress-strain response of a single 
element with and without an inclusion. As expected one notes 
that compared to pure elastomer, the configuration with a per- 
fectly bonded inclusion is stiffer and that with a hole is softer 
than the pure elastomer. In addition one observes that the ele- 
ment with a bonded inclusion loses stiffness gradually as the 
debond increases, and becomes more compliant than the pure 
elastomer. Also one observes that when a large area is de- 
bonded, the geometry behaves like one with an unbonded inclu- 
sion. The largest nominal strain is in the order of 600 percent. 

4.2 Effect of Inclusion Size. The effect of inclusion size 
in a unit-cell is considered next and documented in Fig. 3 for 
inclusion radii of r = 0.25,0.5, 1.0,1.3 mm in an initial domain 
of 3 mm X 3 mm (Corresponding volume fractions are 2.2, 
8.7, 35.0, 59.0 percent). When the size of inclusion is small 
(0.25 mm, 0.5 mm, 1 mm) relative to the domain size, the 
overall stress-strain curve is monotonic; when the size of the 
inclusion is large (1.3 mm), the overall stress-strain trace is 
not. The larger the inclusion size, the sooner the specimen de- 
bonds and loses stiffness, because debond initiation occurs ear- 
lier for the larger inclusion. When the inclusion size is very 
small (0.25 mm), the stiffness of the composite element is 
larger than that for pure elastomer even when debonding occurs. 

4.3 Change of Boundary Constraints. To check the ef- 
fect of boundary conditions on the overall behavior of a unit- 
cell (volume fraction 35 percent), we change the boundary 
conditions at the "sides" of the unit cell from traction free, to 
(a) elastic foundation (i.e., the side walls of the unit cell are 
constrained horizontally by springs), (b) zero normal displace- 
ment («, = 0). The behavior of the unit-cell changes noticeably 
(Fig. 4): over the strain range presented, the traction free condi- 
tion leaves part of the bond between the matrix and inclusion 
intact, while the lateral displacement constraint leads to early 
dewetting closely followed by the elastic constraint, but with 
somewhat later unbonding. 

4.4 Effect of Inclusion Shape and Orientation. Inclu- 
sions are generally not round. The effect of the shape of an 
inclusion is investigated by considering inclusions in the shape 
of a circle, an ellipse and a square located in the center of a 
square elastomer matrix. The shape of an inclusion affects the 
time of debond initiation and the growth of voids (detail results 
not reported here). 

The orientation effect is investigated by considering a speci- 
men with an elliptic inclusion (aspect ratio 2, volume fraction 
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17.5 percent) in three orientations (major axis is oriented 90, 
45 and 0 degrees with respect to the tension axis). Figure 5 
shows that when the elliptic inclusion is oriented at 90 or 45 
degrees, the overall stress-strain curves are non-monotone. For 
the 90 deg case, the debonding occurs over a large portion of 
the interface almost at once, which corresponds to the drop in 
stress in Fig. 5 (curve 3). A similar situation arises for the 45 
deg case. These indicate that when the largest cross section of 
the inclusion is perpendicular to the loading axis, the debonding 
occurs earlier and faster than for (near) alignment. 

4.5 Interaction of Inclusions. A comparison was also 
made between different numbers of inclusions in a block of 
elastomer which have the same volume fraction and identical 
inclusions. The number of inclusions considered are 1,2, and 
4. It is observed that there is basically no difference between 
the case of one inclusion and that with two inclusions. The 
overall stress-strain curve for the elastomer with four inclusions 
differs little from those with one or two inclusions, and there 
is a trend that the overall stress-strain curve converges to a 
single curve as the number of inclusions increases. 

A square elastomer with 4 and 16 inclusions was also consid- 
ered for which the inclusion sizes fluctuate around a mean value 
(0.3 mm for the 4-inclusion case, 0.4 mm for the 16-inclusion 
case). Again, normal displacements are described at two oppo- 
site sides of the elastomer. The remaining two sides are traction 
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Fig. 4   Effect of changing boundary constraints 
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Fig. 5   Effect of orientations: (a) the overall stress-strain curves; (b) a 
stress contour 

free. The size of the elastomer is 2 mm X 2 mm for the 4- 
inclusion case, and 4 mm X 4 mm for the 16-inclusion case. 
For the 4-inclusion case, the computation extends to 18.3 per- 
cent overall strain (the largest normal strain in the elastomer is 
43 percent), after which it diverges. For the 16-inclusion case 
the computation reaches 4 percent overall strain with the largest 
normal strain being 23 percent, thereafter the algorithm diverges 
(see Fig. 6). 

A more detailed examination of the results for the two cases 
shows that debonding occurs first at the larger inclusions and 
voids formed there grow larger as the external load increases 
compared to those at smaller inclusions. The voids formed at 
smaller inclusions seem not to grow or grow very slowly. This 
is consistent with the observation made in the unit-cell situation. 
What cannot be observed in a unit-cell setting is that the voids 
formed at the inclusion-matrix interface can grow, they can also 
shrink as external loading is increased due to the interaction 
among inclusions (see Fig. 7), and that a sufficiently large void 
tends to coalesce with a sufficiently large nearby void, but not 
necessarily the nearest void. In addition discrete segmental in- 
creases are observed in the overall stress-strain curve for the 
16-inclusion case, but not for the 4-inclusion case, this is due 
to the fact that the 16-inclusion case has a larger volume fraction 
of inclusions than the 4-inclusion case (about 50 percent versus 
30 percent). This "roughness" in the stress-strain response has 
also been observed by Gonzalez and Knauss (1997), where the 
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volume fraction of (three-dimensional) particles is about 70 
percent. 

5   Some Numerical Issues 

It is observed that the convergence of computations is very 
sensitive to the mesh, time increment and quadrature for the 
integration of the interface element stiffness matrix. When de- 
bonding occurs, a very large number of iterations is necessary. 
We tested Gaussian quadrature and Lobatto quadrature for the 
integration of the interface element. In the present, large defor- 
mation occasion, Gaussian quadrature was found more satisfac- 
tory than Lobatto quadrature, which is more efficient in cases 
of small matrix deformation (see, for example, Schellekens and 
De Borst, 1993). 

In order to analyze a force-controlled problem setting or an 
unstable failure process in a displacement controlled problem 
setting, a dynamic rather than a quasi-static formulation is 
needed. The interfacial decohesion propagates very rapidly dur- 
ing an unstable failure process as observed by Gonzalez and 
Knauss (1997). The unstable nature of a fast propagating de- 
cohesion also shows up in stress-strain curves as a small, sudden 
drop in the stress. 

I0r 

-j—'  I '  i  i  i  I i ■  '  ■  t  .... i  ...  . 
0.01 0.02 0.03 0.04 0.05 
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(b) 

Fig. 6(b) 

Fig. 6   Interaction of (16) inclusions of different sizes: (a) the overall 
stress-strain curve; (b) a stress contour 

(a) 

(b) 

Fig. 7 A 4-inclusion case: voids formed at interfaces can grow and/or 
shrink when external load increases (a) overall strain 8.6 percent; (b) 
overall strain 18.3 percent 

6    Conclusions 
By characterizing the particles, matrix and interfaces in a 

particulate-filled elastomer individually, the whole failure pro- 
cess (interfacial debonding, growth of voids formed at inter- 
faces) is analyzed by the FEM. It is demonstrated that the 
scheme can predict the damage evolution in particulate-filled 
elastomer in a "discontinuum" way. The predictions are quali- 
tatively the same as those observed in laboratory experiments. 

The main observations are that the behavior of particulate- 
filled elastomers depends on the size, shape, orientation and 
interface properties: in an elastomer containing regularly distrib- 
uted identical particles, the overall stress-strain curve seems to 
converge to a single curve as the number of particles increases 
(fixed volume fraction); in a filled-elastomer containing differ- 
ent size particles, the interaction among particles plays an im- 
portant role in the growth and coalescence of voids. The interfa- 
cial failure process is highly unstable, especially when the vol- 
ume fraction of inclusions is relatively large. 

In order to analyze more complicated problems, such as inter- 
action of particles and a macroscopic crack, propagation of a 
crack via the growth and coalescence of voids, the computa- 
tional approach must be made more robust and stable. 
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SUMMARY 

The stability of homogeneous phase separation in finite solids containing planar, 

cylindrical or spherical interfaces is investigated analytically. Explicit stability conditions 

are deduced for each interface geometry. It is shown how the interaction of load (force or 

displacement), material properties of the phases and interface properties jointly 

determine the stability of the interface separation process. 

INTRODUCTION 

In an effort to model failure and fracture in highly particle filled solids (solid propellant 

rocket fuels for example) it has been proposed to characterize the damage in the crack tip 

region through discretized representation of the deformations around particles, including 

their separation from binder, which is usually refereed to as "dewetting" (Zhong and 

Knauss [1]). The extent of the region in which this phenomenon needs to be modeled in 

detail is determined experimentally to be on the order of a millimeter or a fraction 

thereof. Outside this domain the composite is to be described by a (possibly nonlinear) 

continuum constitutive law. Thus the individual phases of the composites are 

characterized separately, i.e. matrix material, particles and the interfaces are assigned 

different constitutive behavior in a detailed finite element model. 

In evaluating such models for various phase properties and volume fractions, instabilities 

occur that raise the question whether their origins are numerical or physical in nature. 

Since interfaces are ubiquitous in (fibrous, particulate or layered) composites and damage 

accrued through interfacial failure is an important phenomenon in these solids, we 

address the issue how the interaction of specimen size, filler geometry, properties of 

matrix and interfacial constitution lead to stable vis-ä-vis unstable interfacial separation. 

It thus the purpose of this note to illuminate this question through deriving global criteria 



that establish conservative estimates for the onset of instability. In the context of layered, 

fibrous and particulate composites we consider thus finite domains containing planar, 

cylindrical or spherical interfaces. 

Interfaces can be characterized at least qualitatively by interfacial constitutive models ( 

see for example, Needleman [2], Ungsuwarrungsri and Knauss [3]). Suo, Ortize and 

Needleman [4] investigated the stability of solids containing interfaces in terms of two 

semi-infinite solids bonded along a plane by defining the onset of instability as the 

appearance of non-unique solutions to the associated boundary-value-problem. In the 

sequel, the principle of minimum potential energy is used to select a favorable solution 

when bifurcation occurs. The unstable solution is considered in the Liapunov sense such 

that an infinitesimal change in the excitation produces a finite change in response. It is 

shown that the onset of non-uniqueness of solutions to boundary values problems does 

not necessarily lead to instability in an energy sense, a result that includes the special 

situation of a propagation craze-crack employing more specific interfacial constitutive 

descriptions (Ungsuwarungsri and Knauss [5]). 

Stability analyses for the development of inhomogeneous deformation fields have been 

performed in connection with shear band formation when coupled with material strain 

softening behavior as (in the absence of any fracture), for example, by Needleman [6]. 

More recently Levy [7] has studied how phase concentration affects stability through a 

bifurcation condition in a two dimensional setting and for a specific interface model. Here 

we consider a more general model of interface cohesion, and identify how the interaction 

of load (displacement or force), matrix material properties and interface properties jointly 

determine the stability of an interfacial separation process. We show specifically that 

interfacial separation instability involves the maximum negative slope of the unloading 

portion of the interface cohesion model together with the matrix modulus and the 



specimen size. Thus the work reported here provides new perspectives for numerical 

simulation of interfacial failure process. 

AN INTERFACIAL CONSTITUTIVE MODEL 

Interfacial constitutive models considered to date are typically rate independent and relate 

the separation to the traction across an interface. The general features of these models are 

that the traction across the interface first increases and then decreases with interfacial 

separation; by definition total separation at the interface is achieved when the traction 

across the interface has dropped to zero. For bond-normal separation, an interfacial 

constitutive relation between the traction T and separation A 

r = /(A) (i) 

is illustrated schematically in Figure 1. 

A PLANAR INTERFACE 

Consider an elastic two-phase solid consisting of two rectangular plates (with Young's 

modulus and Poisson's ratios El,vl,E2,v2) bonded as shown in Figure 2. The interface 

is vanishing thin and is characterized by the interfacial constitutive relation of the form 

described in Figure 1. Because the system obviously becomes unstable as soon as 

T = <rmax, if normal traction t are prescribed at x2 = ±L. We consider here only a 

displacement control problem with boundary conditions 



/ = 0, at x, =0,a, 

tx = 0, u2 =±u, at x2 =±L. 

For reasons of simplicity eliminate shear stress by letting v, = Oand v2= 0. Equilibrium 

(plane   stress)   and   compatibility   determine   that  the   edge   displacement   u,   the 

homogeneous stress a(= <r22) and the separation A at the interface are related by 

TE    - 
/(A) = —(2II-A) (2) 

where ~E = EXE2I(Ex+E2). 

This   nonlinear  algebraic   equation  can  be   analyzed   geometrically.   Consider  the 

intersection of the curve y = /(A) and the straight line(s) v(w, A) = 2E(2u - A) / L. The 

number of solutions to (2) (intersections of the two y-functions) depends on the slope of 

the straight line(s) and the magnitude of u for given interface properties (See Figure 3) : 

When the slope (2E I L) of straight line(s) is sufficiently large, the solution to (2) is 

unique for all u; for smaller slopes, the solution can bifurcate when u is large. Thus the 

condition for the existence of a unique solution to (2) is thus 

? F 
— > max (-/'(A))- (3) 

L 0<A<A0 

Let n be the total energy (work done on) in the system, consisting of the sum of the 

energy stored elastically in the plates and the work done against the interface traction 



n=^.+j/(^=-L/2(A)+j/(^, w 
a      IE     l £z o 

with / given by (2). 

When IE > max (-/'(A)), the total energy n of the system is a monotonic function of 
L 0<A<&0 

- 2E 
the applied displacement w ; When — < mix (-/'(A)), and u is sufficiently large, 

there are two or three solutions to (2). For each solution, the corresponding n is a 

monotonic function. The acceptable solution is that which minimize the potential energy. 

It is thus seen that when E I L is large, a stable homogenous decohesion of the interface 

is possible in the sense that a continuously varying separation of the interface occurs as a 

function of the applied displacement; otherwise the instability of the system occurs. This 

can happen even before the stress at the interface reaches o^ and the two plates separate 

suddenly at a non zero stress, provided EI L is sufficiently small. In other words, the 

suffer the bulk materials and smaller the domain size, the more stable the system is under 

boundary displacement control. 

A CIRCULAR INTERFACE 

Consider next a simple case of a cylindrical rod or fiber (assumed rigid) embedded in an 

elastic cylindrical matrix with inner radius a, outer radius b, possessing an elastic 

modulus E and Poisson's ratio v under plane strain conditions, assuming that the rod 



(inclusion) is rigid. The interface is again characterized by the interfacial constitutive 

relation illustrated in Figure 1. 

Assuming axisymmetric deformation there are no shear stresses in the system. 

The boundary conditions (polar coordinates (r,6>)) are then 

(I) r = b,ur=u,tg=0. (displacementcontrol) 

or 

(II) r = b,tr=l,te=0. (force control) 

It is easy to show that the stability conditions for these two boundary conditions are 

(1) Displacement control 

2Eb(b2-a2)    b\l-v) + a\l + v)> (5) 

(a2+b2)2(l-v2) lab O<A<A0
V 

(2)Traction control 

2
£(*2-*2

2
)A > max (-/" (A)) (6) 

The potential energy as a function of applied displacement is given as an example in 

Figure 4 for an unstable decohesion process. Compared with the case for the planar 

interface, we see that (1) stable interfacial decohesion is possible even the process is force 

controlled, (2) debonding process is more stable the larger b/a is; this is opposite to the 



finding for the planar interface where a smaller "L" corresponds to the more stable 

debonding process. Thus the stability of interfacial failure (dewetting) depends on the 

interfacial properties as well as on the geometry of the interface and loading conditions. 

A SPHERICAL INTERFACE 

A three dimensional generalization of the results for the circular interface case is easily 

realized by considering a rigid spherical particle (r = a) embedded in a spherical domain 

(bonded by r = b ) of Young's modulus E and Poisson's ratio v subjected to 

axisymmetric deformation. This consideration involves a spherical interface, the 

geometrically simplest interface in particulate composites. 

The boundary conditions (spherical coordinates (r,8,(p)) are then 

(I) r = b,ur=u,te = 0,tip=0. (displacementcontrol) 

or 

(II) r = b,tr = t,tg = 0,f, = 0. (force control) 

leading to the stability conditions 

(I) Displacement control 

2(l-2v)b3+(\+v)a3    E(b3-a3) 

a3(2(2- v)b3 -(1 + v)a3)     b-a     ~O<^A0 

3N      , >max(-/'(A)). (7) 



(II) Traction control 

Eib'-a3) ^mx(./.(A)). (8) 
a((l + v)63+(l-2vK)    O<A<A0 

DISCUSSION 

The above stability conditions are consistent with recent numerical experiences (Zhong 

and Knauss [1], Needleman [8]) for both planar and circular interfaces in much more 

complex situations. As far as the stability of a system involving homogeneous interfacial 

decohesion is concerned, there is not much difference between a circular interface and a 

spherical interface. 

The instability is associated to the sudden drop of traction at interfaces and associated 

energy release when interfacial failure occurs. This local instability poses considerable 

difficulties for the numerical simulation of interfacial failure in a quasi-static setting and 

will lead to the divergence of numerical computations. One way to cope with this 

complication is to model the interfacial failure process as a dynamic process. Another 

way is to "regularize" the interfacial constitutive relation at the point of the instability 

onset, replacing the original traction separation curve by a "modifying" line derived from 

stability analysis. Such a regularization may lead to avoidance of instabilities in 

numerical computation while retaining the basic feature of the original response. This 

regularization makes the corresponding numerical simulation somewhat similar to the 

"nodal release" technique1. 

1 In this regularization process the fracture energy remains as the same as that defined by the interfacial 
model while the fracture energy associated with the "nodal release" technique is arbitrary (undefined). 



We have considered here only uniform decohesion at interfaces. A more complete 

description would concern the stability of the local failure process through an 

inhomogeneous decohesion. Intuitively, an interfacial failure process involving 

inhomogeneous decohesion is more stable than that involving homogeneous decohesion 

here, because the surrounding bonded region tends to stabilize the decohesion process. 

Thus the stability estimation obtained here for homogenous decohesion might provide a 

non-conservative estimate of the onset of instability for an arbitrary interfacial failure 

process. It has the advantage of relating in a simple manner the domain size and the 

properties to a stability criterion, a situation that requires much more analysis for an 

inhomogeneous dewetting process. 
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EFFECTS OF PARTICLE INTERACTION AND SIZE VARIATION 

ON DAMAGE EVOLUTION IN FILLED ELASTOMERS 
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Abstract 

A micromechanical analysis of damage evolution (interfacial debonding) in particle- 

filled elastomers addresses the effect of the interactions between particles and of vari- 

ation in filler size. The composite is treated as an assembly of two constituents in a 

finite element model. It is shown that the interaction between particles controls the 

damage evolution: (1) For high volume fraction, a relatively small change in particle 

size has a surprisingly large effect on local material response; (2) for large differences 

in particle sizes(e.g. bimodal distribution), damage occurs at interfaces between large 

particles and matrix, with limited damage occuring at small particles. While these 

effects of particle interaction and size variation are smoothed out in a large ensemble 

of particles, it is foreseeable that they are an important factor in a failure process such 

as maccroscopic crack propagation, which spans scales considerably larger than the 

maximum particle size. Specifically, one expects thus that in the vincity of a macro- 

scopic crack the large particles become sites for small cracks which coalese to larger 

ones and join up with the macro crack, while small particles operate primarily so as to 

locally stiffen the matrix without incurring significant damages in their vincity. 

1    Introduction 

Recently substantial efforts have been made in community of mechanics of materials towards 

damage evolution in composites and its effect on global material behavior. Theoretical stud- 



ies with constitutive models accounting for damage have been proposed; see for example, 

Farris and Schapery (1973), Schapery(1986), Govindjee and Simo (1992), Vratsanos and 

Farris (1993), and Ravichandran and Liu (1995). By proposing a constitutive model, one 

implicitly treats a damaged material as a homogenized material and neglects any detailed 

interaction between various damage sites. In attempts to inquire into the mechanics of the 

damage development finite element analyses tend to make use of unit-cell models (Needle- 

man (1987), Yeh (1992), and Walter, Ravichandran and Ortiz (1997) in which one assumes 

that fillers (fibers, particles etc) are uniformly of the same size and (periodically) distributed 

homogeneously in the composite. However the unit-cell approach cannot address the inter- 

action between particles or their clustering of fillers, nor can it be instructive on the effect 

of variations in filler size. 

The motivation behind the current work is the desire to develop a computational scheme 

to deal with the fracture behavior of particulate composites. To this end Zhong and Knauss 

(1997b) have proposed a hybrid discrete-continuum approach which incorporates the discrete 

damage evolution in filled elastomers. The basic thought is to characterize the material far 

from the crack tip as a homogeneous body, while close to the crack tip, in a region measured 

possibly in millimeters or thereof the discrete particulate interaction with damage evolution 

are modeled as illustrated in Figure 1. Such pursuits appear feasible in light of the ever more 

rapidly increasing power of computing machines. Initial studies directed to that goal have 

shown that for small numbers of particles the material behavior is reproduced qualitatively 

(Zhong and Knauss (1997b)). 

In this paper we concentrate on the effect which the interactions of particles have on the 

damage evolution along with the quest for understanding the role which particle size plays 

in this picture. For the purpose of this initial study, the elastomer matrix is characterized as 

a hyperelastic Ogden material (Ogden, 1972), although, in reality, the elastomer may posess 

time dependent characteristics l. Because the elastomer matrix is typically soft relative to 

the particles, the latter may be considered to be rigid 2. The interface between particle and 
1The motivation for this work comes from the failure behavior of solid propellant rocket fuel; these 

materials possess time or rate dependent properties, but for exploratory purposes, it suffices to ignore the 

effects. 
2This choice is made for convenience. Under high rate loading, the binder may be stiff by compression 



matrix can fail and is, therefor, modeled by a cohesive-zone type feature with the bond at the 

interfaces so "weak" that only interfacial debonding needs to be considered ( no cavitation 

occurs in the elastomer). A two dimensional version of the problem is considered here and a 

fully three dimensional problem description is left to future investigations, since it requires 

only a larger/faster computer. 

In the sequel we delineate the interface model along with the associated stability issue in 

Section 2. The computational model is presented in Section 3 including the FEM formulation 

for hyperelasticity and the interface element. To evaluate the effect of the interaction between 

particles (inclusions) of different size, we analyze configurations of four (4) as well as sixteen 

(16) inclusions wherein the particle sizes vary by small amounts (10%). In addition we 

examine the interaction between inclusions for a bimodal size distribution and find that (1) 

for a high volume fraction of filler, a small change in particle size has a large effect on material 

response, (2) when there is a big difference in particle sizes(such as bimodal distribution), 

damage occurs along interfaces of large particles, little damage taking place around small 

particles. 

2    An interfacial constitutive model 

To model the interfacial separation, we imitate the cohesive failure by a traction-displacement 

relation that replaces the local consititutive behavior in a thin layer (zero thickness in the 

model). The interfacial traction is assumed to increase with increasing interfacial separation 

to a critical value, after which the traction decreases with increasing separation, eventually 

vanishing, which condition then corresponds to total separation, (cf Ungsuwarungsri and 

Knauss;1987). 

2.1    The interfacial constitutive model 

Let n be the normal to an interface, and s, t the corresponding orthogonal tangential direc- 

tions; En, Es and Et are elastic moduli of a nonlinear (dissipative) spring in the directions 

so that the particles will also deform.  That case is computationally treatable as well, but requires larger 

computational resources. 



(n, s,t). The spring response is 

D = 

K o    o 
0     E°s   0 

0     0     E? 

(1) 

as long as the normal separation Aun is less than the critical normal separation Auc. Once 

Aun > Auc, the spring moduli degrade such that 

D = 

£°(2 

0 

0 

A 
Au 

Jin.)     0 
ill*  t 

0 

E.{2-%£)   0 
0 m - jt) 

(2) 

for Auc < Aun < 2Auc, and vanish for Aun > 2Auc. 

The nonlinear interface constitutive relation is thus 

f = DAu (ns)> (3) 

with Au the relative displacement in local coordinates (n, s, t) and f the conjugate interfacial 

traction defined on the undeformed reference configuration. 

Only failure due to normal separations is accounted for in the current model. While 

one needs to consider shear failure at an interface for more general situations, it is not 

difficult to include shear failure into the above interfacial model as demostrated, for example 

by Tvergaard and Hutchinson (1993). However, for the type of solid propellant related 

problems under consideration, the tensile strength of the interface is much lower than the 

shear strength so that considering the "opening mode" of failure alone encompasses the 

major damage contribution. 

2.2    Stability of an interfacial failure process 

In 1992 Suo, Ortiz and Needleman presented a stability analysis for solids possessing inter- 

faces by considering two semi-infinite solids bonded along a plane. Instability of the system 

was defined as the onset or development of nonunique solutions to the associated boundary- 

value-problem. In a more global approach Zhong and Knauss (1997a) recently studied the 

stability of finite solids, with planar or circular interfaces under homogeneous decohesion 



(i.e.  the whole interface debonds uniformly at the same time) deriving compact stability 

criteria for a general form of the traction-displacement interfacial relation 

/ = /(Au). (4) 

For homogeneous decohesion at a bi-material planar interface the stability condition is 

^>M^X0<Au<Au3(--f-). (5) 

where Aus corresponds to total separation at the interface. The right hand side of inequality 

(5) represents the maximum value of —j^ when Au is in (0, Aus). It is clear that the size 

of the specimen (L), effective elastic modulus (-Be// = EiEz/(Ei + Ei)), where E\ and E2 

are the elastic moduli) and the unloading part of the interfacial relation(4) determine the 

stability of the system. Similar stability conditions are obtained for circular and spherical 

interface (see Zhong and Knauss (1997a)). For the interfaces in filled elastomers modeled 

here, E\ is the modulus of matrix material, Ei is the modulus of particles, taken here to 

be infinity because of their relatively high stiffness compared to rubbery bindder, so that 

Eeff = Ei (matrix modulus). It is thus clear from the above stability condition (5), that the 

more compliant the matrix material is, the less stable is the corresponding composite with 

respect to interfacial failure. Thus particulate-filled elastomers tend to be less stable than 

particulate metallic composites with respect to the interfacial failure process. 

An interfacial failure process associated with inhomogeneous decohesion at interfaces is 

intuitively more stable than that associated with a homogeneous decohesion. This is so 

because the surrounding, bonded regions tend to stabilize the decohesion process. Thus 

the stability conditions obtained by Zhong and Knauss (1997a), though applied only to 

homogeneous decohesion at interfaces, provide non-conservative estimates for the onset of 

instability in interfacial failure processes. 

The instability due to interfacial decohesion is local because of the rapid (sudden) drop 

of tractions at the interfaces. This local instability poses a problem for the numerical simu- 

lation in a quasi-static setting because it can (and does) lead to the divergence of numerical 

computations. 



3    Formulation of the computational model 

We allow for finite deformations and use a three-term Ogden strain energy function for the 

constitutive description of the matrix as a hyperelastic material. For reference purpose, we 

summarize here the hyperelasticity theory and its hybrid FEM formulation briefly. 

3.1    Hyperelasticity and its FEM formulation 

Let Cl0 be the undeformed reference configuration of the hyperelastic material(s), Qt the 

current deformed configuration, and Vo and Vt the corresponding volumes. Xef20, y&t- 

If u(X) is the displacement vector at material point X, F the corresponding deformation 

gradient and J the Jacobian of F (unit volume change) one has 

y = X + u(X), (6) 

F = ^ (7) ax' [<) 

J = det(F). (8) 

Because the hyperelastic material is (almost) incompressible, the deformation gradient 

F is multiplicatively decomposed into its deviatoric and dilatational components, Fdev and 

Fval such that 

p _ -pdevYvo1, (9) 

Fdev = J-1/3F) (10) 

Fvol = jl/3l) (Uj 

with I the identity tensor. It is easy to check that det(Fdev) = 1, det(Fvo1) = J so that Fde" 

is the volume preserving part of F, and F™' its dilatation part. 

The strain energy function for a nearly incompressible, hyperelastic solid was given by 

(Ogden, 1984), 

W{F) = W(Fdev) + (f>{J), (12) 

where W takes account of the deviatoric deformation and <f> with 0(1) = 0, of dilational 

deformations. 



Considering frame indifference, and further assuming that the hyperelastic material is 

isotropic, one has 

W(F)=w(Ä1>Ä2,Ä3) + ^(J), (13) 

where Aj are the principal deviatoric stretches. 

Ogden(1972) assumes that u has the form, 

w(Ai, Aa, Ä3) = £ %*i' + X? + Ä? - 3) (14) 
t=l   ai 

so that the small strain shear modulus is /io = Z)£Li ^i and the relation between the Cauchy 

stress and the principal stretch is 

dXi       Zti    d\i dJ   ' K   > 

If the material is incompressible (J = 1), one has 4>{J) = 0, and the corresponding 

stress-stretch relation is 
dW 

n = ^-Pt (16) 

where Pi is an arbitrary pressure and Aj are the principal stretches. 

For nearly incompressible material, the usual displacement finite element formulation 

can "behave poorly" because the effective bulk modulus is very large compared to its shear 

modulus, which cause the stiffness matrix to be almost singular from a numerical point of 

view. Consequently, the stress calculated at the numerical integration points show large 

oscillation in the pressure. To avoid this, a hybrid element or mixed formulation has been 

proposed (see for example, Simo and Taylor(1991)). 

3.2    Interface element 

The interfacial constitutive relation is implemented by constructing an interface element by 

the principle of virtual work (Beer (1985)) by the follwoing steps: (l)Set-up local coordinates 

(n, s, t) to describe the interface geometrically; (2) Find the relative displacements at 

the interface in local coordinates; (3) Use the principle of virtual work and the interfacial 

constitutive relation to obtain an equilibrium condition for the interface element in terms of 



global nodal coordinates. One then assembles the interface element stiffness matrix with the 

remaining element stiffness matrices to form the global stiffness matrix. 

If Fe is the force vector for nodes of the interface element, a is the element displacement 

vector and B the transformation matrix between nodal displacements and displacement in 

the local coordinates. Then, with point (3) in mind one has 

L B1fds = Fe, (17) 
interface 

or 

f BTDBads = Fe, (18) 
J interface 

If n refers to time steps, k refers to the sequence of iterations, the residual force due to the 

interface element is 

R = - / BTD^Bdsak
n (19) 

J interface 

and the tangent stiffness matrix of the interface element becomes 

K« = --. (20) 

For the interfacial relation (3), the tangent stiffness matrix for interface elements is non- 

symmetric. Using the tangent stiffness matrix may be a source of numerical difficulty since 

the stiffness matrix for the bulk material is symmetric. We use direct iteration, which is 

expressed for the interface elements by 

f BTDk
nBds{Aa} = Ff+1)e - f BTDkBds{an} (21) 

Jinterfo.ce -/interface 

where <4fc+1) = a£ + Aa. The implementation of the FEM formulation for hyperelasticity 

is available in ABAQUS 5.5, and the interface element (interfacial constitutive model; the 

element has intially zero thickness) is incorporated into that code by way of a user subroutine. 

4    Numerical results 

We consider plane strain deformation in the modeled two-dimensional composites.   The 

matrix characteristics are determined by fitting the parameters in the 3-term Ogden function 
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to the experimental data of Treloar(1940). The parameters are pi = 58.23MPa, a\ = 1.029, 

H2 = 1.35 x 10-5MPa, a2 = 10.707, /x3 = 0.246MPa, a3 = -2.957; these satisfy the 

material stability condition. The parameters in the interfacial element are chosen such that 

the maximum /„ at an interface is of the same magnitude as that observed in relevant 

uniaxial tensile experiments (Vratsanos and Farris(1993)). The specific parameter values 

chosen are En = 103MPa, Et = 104MPa and Auc = 10-5m. 

The numerical integration of the interface element stiffness matrix is carried out by 

a 2-point Gaussian quadrature. Due to the inherent proclivity towards instability of the 

debonding process, all the numerical examples are examined under displacement controll. 

As a convention, we mean the Cauchy stress when writing "stress" unless specified differently 

and the word "strain" connotes nominal strain. 

The common approach to analyze properties of composites, whether by numerical or 

closed form methods involves the "unit cell" approach. It is implicit in this approach that 

(a) filler particle sizes are "distributed" uniformly and periodically and (b) the unit cell 

characteristics are adequatly indicative of global response of the composite. With the intent 

of questioning the latter assumption we examine thus particle size variations and divide the 

effort arbitrarily into consideration of small and large variations in particle size. 

4.1    Interaction of inclusions: small variations in inclusion sizes 

Three cases are considered: composites with low volume fraction (8.7%), intermediate volume 

fraction (35.0%) and high volume fraction (68.4%) of particles3. In these three cases we 

analyze a square domain containing 4-inclusions with different radii. For reference purpose, 

we also analyzed the counterparts of these problems with identical inclusions, the radii of 

which are the mean of the inclusion radii for the non-uniform configuration. In the seques we 

refer to the geometry with identical particle size as case 1 and to the situation with different 

particle size as case 2. The radii of inclusions and their mean values for each case are listed 

in table 1; where we associate the case number 1, 2, 3 with volume fractions; particle size 

variations are sub-cases as in 1.1 and 1.2 for example for case 1. 

3The upper limit of volume fraction is 78.5%, for uniformly distributed "rods" in a (two-dimensionl) 

composite and 52.4% for uniformly distributed spherical particles 



Table 1: Inclusion radii and mean radii 

Case Inclusionl Inclusion2 Inclusion3 Inclusion4 Mean volume 

radius radius radius radius radius fraction 

1 0.49 0.51 0.52 0.48 0.5 8.7% 

2 1.1 1.0 0.99 1.05 1.035 35.0% 

3 1.41 1.42 1.39 1.38 1.4 68.4% 

The boundary conditions are imposed according to Figure 2: Two opposing sides of a 

square elastomer are displaced uniformly in opposite directions by a prescribed amount and 

the remaining, latera surfaces remain traction free, for the case of uniform inclusions, we 

take advantages of symmetry conditions. 

Low volume fraction of inclusions (case 1) 

Comparing stress distribution for case 1.1 (inclusions with same radius) and case 1.2 

(inclusions with differnt radii) at several global strain stages (roughly 5%, 10% and 16%), 

there is no significant difference between the two subcases. This observation is further 

supported by the little difference between global stress strain response of these two subcases. 

(As the volume fraction is low, the difference between the particulate composites and the 

pure elastomer is small, too). These results were reported earlier by Zhong and Knauss 

(1997b). 

These observations indicate that when the volume fraction of inclusions of a composite 

is small, the interaction between particles is weak, and thus unit-cell approach or damage- 

incorporating constitutive model can be applied with confidence even though the sizes of 

fillers vary a little. 

Intermediate volume fraction of inclusions (case 2) 

Case 2.1: Inclusions with same radius 

We observe that 1) the vacuoles formed at the interfaces between the matrix and the 

four inclusions are the same (obvious due to the symmetry condition); 2) the size of cavities 

formed at the interfaces increase as the applied strain increases from 1.2% to 5%, as expected. 

Case 2.2: Inclusion with different radii 
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From stress contours one observes several features4: 1) cavities formed at the interfaces 

between the matrix and the four inclusions are not the same; 2) interfacial failure process 

at the interfaces are significantly different between case 2.1 and case 2.2: in case 2.1, voids 

formed at interfaces will grow monotonically, in case 2.2 voids formed at interfaces can grow 

as well as shrink due to inclusion interactions. The second observation is supported also by 

the difference in the global stress strain responses for the two subcases, as shown in Figure 

3. In Figure 3, we see clearly that the stress strain curves for the two subcases are essentially 

the same when global strain is smaller than 2.5%. However, when this strain exceeds 2.5%, 

kinks in these two stress strain curves occur at different strain levels and their profiles have 

distinct features. (Kinks in stress strain curves indicate substantial debonding at interfaces). 

So when the volume fraction of inclusions is at intermediate level, interactions between 

inclusions are moderate, but effects of these interactions on the damage evolution are easily 

identifiable from global stress strain curve. 

High volume fraction of inclusions (case 3) 

When the volume fraction is as high as 68.4%, one observed prounced effects of particle 

interaction and of variation of particle sizes. 

Case 3.1: Inclusion with same radius 

We report the stress contours in Figures 4a, 5a, we see that (1) debonding occurs at 

interfaces near symmetry plane perpendicular to the direction of loading, (2) separations 

grow with the increase of global strain, (3) when the global strain is around 10%, the interface 

cavities look similar to those predicted by unit cell analyses. 

Case 3.2: Inclusions with differnt radii 

When the sizes of the 4 inclusions are slightly different, it is observed (Figure 4b, 5b ) 

that (1) debonding occurs at the larger inclusions first, (2) cavities formed at interfaces grow 

or shrink with the increasing global strain (this is impossible in a unit cell analysis). This 

second observation is clearly a strong indication of the significant effect of the interactions 

between particles and also of the significant effect of even a slight variation in particle sizes. 

The interaction of particles and variation of inclusion sizes jointly control the damage 

4To save space, we do not display stress contours here. More detailed numerical results are given for case 

3 where significant effects of size variation are observed 
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evolution process as well as the global material response.   The global stress strain curves 

shown in Figure 6 indicates that when significant debonding occurs (indicated by the kink 

at 0.2% global strain), the material responses differ substantially between a composite with 

the same size of inclusions and a composite possesing inclusions of different sizes. 

A 16-inclusion problems (case 4) 

A square with 16 inclusions was also considered for which the inclusion sizes fluctuate 

around a mean of 0.4 rendering a volume fraction of 50%. Again, normal displacements are 

described at two opposite sides of the domain with the remaining two sides being traction 

free. For this case the computation reaches 4% global strain with the largest normal strain 

in the interior being 23%; thereafter the algorithm diverges. 

A detailed examination of the results for this case shows that (1) interaction between 

particles control the damage evolution process; (2) a small change in particles sizes has 

a significant effect on damage evolution and material response (see Figure 6ab in Zhong 

and Knauss (1997b)). In addition, discrete segmental increases are observed in the global 

stress-strain curve. 

The 4 cases considered here indicate that the interaction of particles and even the slight 

variation in the particle size control damage evolution in a "particulate" composite and its 

local stress strain response. 

4.2    Interaction of inclusions: large variation in inclusion size 

Again we consider a square domain with 16 inclusions with different radii as indicated in 

Figure 7 (considering symmetry, only a quarter of the domain is displayed). The particle 

sizes are arranged as shown on purpose so that one can take advantage of the symmetry 

conditions involved. 

From Figures 8 - 9, we observe that (1) debonding occurs at interfaces between the largest 

particle and matrix first, and subsequently at interfaces of smaller particles (of descending 

size) and matrix; (2) there is essentially no debonding at the interfaces between the smallest 

particles (about half the size of the large particle) and the matrix even when the global strain 

is 8% or so. 

Again, we observed that the interaction between particles plays important role in the 
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damage (debonding) evolution process. It seems that a bimodal distribution of particles in 

an elastomer produce some distinct features of damage evolution and material response (See 

Figure 10, and also compare Figure 10 with Figure 7 and Figure 6a of Zhong and Knauss 

(1997b)) 

The strong effect of interaction between particles and the significant effect of the slight 

variation of particle sizes (for high volume fraction of particles) cannot be predicted by unit 

cell analyses or damage-incorporating constitutive models. These effects might contribute 

to failure mechanisms in particulate composites with high volume fraction of particles such 

as solid propellants (volume fraction 70 - 90 %).   Nakamura et.   al.   (1992) investigated 

experimentally the effect of the particle size on the fracture toughness of epoxy resin filled 

with spherical silica. They found that both critical stress intensity factor and critical energy 

release rate increased with (mean) particle size.   This can be easily explained by the fact 

that when the (mean) particle size is large, significant damage (in the form of interfacial 

debonding) occurs at a crack tip. This damage zone can consume stored strain energy at 

the crack tip and thus hamper crack propagation. Our results seem to be in line with their 

observations and support the above explanation in the following way: The proposed model 

predicted that the larger the particle size is, the easier is the debonding.   The interfacial 

failure process consumes part of the strain energy. This correlation between numerical and 

experimental observations is indirect because we did not consider the effect of interfacial 

failure on fracture toughness in our numerical study yet. In addition, our results also sug- 

gested that the standard deviation of particle size distribution should have significant effect 

on fracture toughness.  Comparing global stress strain response of composite of same size 

inclusions and that of composite with inclusions of slightly different size, the interfacial fail- 

ure process in the latter composite consumed more energy than that in the first composite. 

We expect that the fracture toughness for the latter composite (small variation in inclusion 

sizes) will be larger. 
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5    Conclusions 

By characterizing the particles, matrix and interfaces in a particulate-filled elastomer individ- 

ually, the whole failure process (interfacial debonding, growth of voids formed at interfaces) 

is analyzed by the FEM. 

It is shown that (1) When the volume fraction is high, even small changes in particle size 

can have a large effect on local material response and on damage evolution in particular; (2) 

When there is a large difference in particle sizes(such as bimodal distribution), separation 

damage occurs at interfaces between the large particles and matrix, little or no damage 

occurs at small ones. It seems that bimodal distribution of particles in an elastomer produce 

some distinct features of damage evolution and local material response. 

Although the effects of inclusion size (small) variation on local material response may 

be smoothed out for an ensemble with large number of inclusions, it seems likely that the 

change in local material response will affect failure process (e.g. interfacial debonding) as 

well as continuum material properties such as fracture toughness. 

In order to analyze the interaction of particles with a macroscopic crack, such as prop- 

agation of a macroscopic crack via the growth and coalescence of voids, the computational 

approach must be made more robust and stable. This type of investigation may lead to a 

better understanding of failure mechanism in filled elastomers. 
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Figure 1. A discretely failing region embedded 
in a linear/nonlinear material 
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slightly different inclusion sizes 
same inclusion size 
pure elastomer 
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Average nominal strain 
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Figure 3: Average nominal stress strain curves for intermediate inclusion 
volume fraction. 
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Figure 6: Averge nominal stress strain curves for Large volume fraction cases. 
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Figure 10: Avergare stress strain curve for bimodal size distribution case. 


